Seminar: Dr. Jason Azouley (Southern Miss) will present “Narrow Band Gap Conjugated Polymers for Emergent Optoelectronic Technologies” to the department

Dr. Jason Azouley (Southern Miss) will present “Narrow Band Gap Conjugated Polymers for Emergent Optoelectronic Technologies” to the department.

Abstract:
Research in the field of organic semiconductors has allowed for the development of commercially relevant technologies such as organic thin-film transistors, light-emitting diodes, photovoltaics, sensors, molecular electronics, and biocompatible medical materials.  Research efforts in industry and academia remain unabated in areas where energy (in the form of light, electricity or heat) meet a wide variety of molecular and even biological systems. Despite the achievement of significant technological milestones, conformational disorder has complicated the identification of design guidelines to control the band gap at low energies. This precludes interactions  with  infrared  (IR)  light,  prevents  the  study  of  fundamental  physical  phenomena, and  constrains  the  design  and  realization  of  new  optoelectronic  and  device  functionalities. Through  the  development  of  modular  synthetic  approaches  and  the  extension  of  molecular conjugation  via  cross-conjugation,  we  have  demonstrated  the  capability  to  systematically control the frontier orbital energetics (separation, position, and alignment), co-planarity of the conjugated backbone, intermolecular interactions, electron density along the main chain, and aromatic  stabilization  of  the  constituent  copolymer  segments.  The utility  of  these  materials towards  developing  a  better  understanding  of  pertinent  loss  processes,  understanding  the nature  of  the  transient  species  in  light  harvesting  applications,  and  the  development  of  IR optoelectronic applications will be discussed. Such control has also resulted in novel physical properties, such as ground state electronics that can be manipulated, curie susceptibilities and conductivities  that are higher  than  other neutral  organic  solids,  novel  collective  phenomena, and unique electrical, optical, spin, and magnetic behavior. We anticipate that the combination of  these  unique  aspects:  modularity,  novel  physics,  and  easy  manipulation  will  enable  new optoelectronic  and  device  functionalities  that  cannot  be  realized  with  current  semiconductor technologies.