Eden Tanner

Assistant Professor of Chemistry & BiochemistryDr. Eden Tanner

179 Coulter Hall
662-915-1165|  eetanner@olemiss.edu


EDUCATIONAL AND PROFESSIONAL BACKGROUND

Bachelor of Advanced Science, 2012
The University of New South Wales, Australia

Doctor of Philosophy, 2016 (Physical and Theoretical Chemistry)
University of Oxford, United Kingdom

Postdoctoral Fellow, University of Oxford, 2016 – 2017

Postdoctoral Fellow, Harvard University, 2017-2020


RESEARCH INTERESTS
Solving biomedical and bioengineering problems using physical chemistry and particularly ionic liquids and nanomaterials


RESEARCH SUMMARY

The Tanner lab seeks to solve outstanding bioengineering research questions using a chemistry framework, where an understanding of the molecular interactions within the delivery system allows the development of predictive frameworks and task-specific solvent design.  Ionic liquids, consisting of a bulky, asymmetric cation and an anion, have attracted significant interest in a broad range of applications, including catalysis and energy applications, due to their favorable properties, including non-volatility, recyclability, and their inherent tuneability whereby the anion and cation can be altered to change the physicochemical properties of the material.  By synthesizing the ionic liquids with biocompatible or bioinspired starting materials, they can be employed in biological contexts. Because changing the structure of the ionic components results in changes to their their biologically relevant properties, including interactions with bio-interfaces, biomolecules and pharmaceutical ingredients, they can be tuned to solve a variety of problems.  Nanoparticles have been touted as ideal drug delivery systems due to their ability to deliver drugs in a more effective, safe, and specific way compared to traditional therapeutics, particularly in the context of administering chemotherapy, such as doxorubicin, to treat cancer. However, the vast majority of nanoparticle technologies do not progress clinically as they face a number of currently insurmountable challenges, which result in <5 % arriving to the intended destination.

 

RESEARCH GROUP WEBSITE

http://thetannerlab.com


SELECTED PUBLICATIONS

Ionic Liquids in Drug Delivery (Harvard)

1. Tanner, E. E. L. et al. Design Principles of Ionic Liquids for Transdermal Drug Delivery. Advanced Materials (2019). https://doi.org/10.1002/adma.201901103.

2. Tanner, E. E. L. et al. The Influence of Water on Choline-based Ionic Liquids. ACS Biomaterials Science & Engineering (2019). 5 (7), 3645-3653.

3. Tanner, E. E. L., Ibsen, K. N. & Mitragotri, S. Transdermal insulin delivery using choline-based ionic liquids (CAGE). Journal of Controlled Release. 286, 137–144 (2018).

4. Ibsen, K. N. et al. Mechanism of Antibacterial Activity of Choline-Based Ionic Liquids (CAGE). ACS Biomaterials Science & Engineering (2018). 4 (7), 2370-2379

Electrochemistry of DNA Capped Nanoparticles (Oxford)

1.  Tanner, E. E. L., Sokolov, S. V., Young, N., Batchelor-McAuley, C. & Compton, R. G. Fluorescence Electrochemical Microscopy: Capping Agent Effects with Ethidium Bromide/DNA Capped Silver Nanoparticles. Angew. Chem. Int. Ed. doi:10.1002/anie.201707809 (2017).

2.  Tanner, E. E. L., Sokolov, S. V., Young, N. P. & Compton, R. G. DNA Capping Agent Control of Electron Transfer from Silver Nanoparticles. Phys. Chem. Chem. Phys.19, 9733–9738 (2017).

Nanoparticles in Ionic Liquids (Oxford)

1.  Tanner, E. E. L., Sokolov, S. V., Ngamchuea, K., Palgrave, R. G. & Compton, R. G. Quantifying the Polymeric Capping of Nanoparticles with X-Ray Photoelectron Spectroscopy. ChemPhysChem. (2018).

2.  Tanner, E. E. L.,Batchelor-McAuley, C. & Compton, R. G. Nanoparticle Capping Agent Controlled Electron-Transfer Dynamics in Ionic Liquids. Chem. Eur. J. 22, 5976–5981 (2016).

3.  Tanner, E. E. L.,Batchelor-McAuley, C. & Compton, R. G. Single Nanoparticle Detection in Ionic Liquids. J. Phys. Chem. C. 120, 1959–1965 (2016).

4.  Kätelhön, E., Tanner, E. E. L., Batchelor-McAuley, C. & Compton, R. G. Destructive nano-Impacts: What information can be extracted from spike shapes? Electrochem. Acta 199, 297 –304 (2016).

Theories of Electron Transfer in Ionic Liquids (Oxford)

1.  Tanner, E. E. L., Batchelor-McAuley, C. & Compton, R. G. Carbon Dioxide Reduction in Room-Temperature Ionic Liquids: The Effect of the Choice of Electrode Material, Cation, and Anion. J. Phys. Chem. C120, 26442–26447 (2016).

2.  Tanner, E. E. L.et al. Application of Asymmetric Marcus–Hush Theory to Voltammetry in Room-Temperature Ionic Liquids. J. Phys. Chem. C119, 7360–7370 (2015).

3.  Tanner, E. E. L. et al. Nanoparticle Capping Agent Dynamics and Electron Transfer: Polymer-Gated Oxidation of Silver Nanoparticles. J. Phys. Chem. C119, 18808–18815 (2015).

4.  Tanner, E. E. L., Barnes, E. O., Goodrich, P., Hardacre, C. & Compton, R. G. One-Electron Reduction of 2-Nitrotoluene, Nitrocyclopentane, and 1-Nitrobutane in Room Temperature Ionic Liquids: A Comparative Study of Butler-Volmer and Symmetric Marcus-Hush Theories Using Microdisk Electrodes. J. Phys. Chem. C119, 3634–3647 (2015).

5.  Tanner, E. E. L., Xiong, L., Barnes, E. O. & Compton, R. G. One Electron Oxygen Reduction in Room Temperature Ionic Liquids: A Comparative Study of Butler-Volmer and Symmetric Marcus-Hush Theories Using Microdisc Electrodes. J. Electroanal. Chem. 727, 59–68 (Aug. 2014).

Organic Reaction Processes in Ionic Liquids (University of New South Wales)

1.  Tanner, E. E. L.,Yau, H. M., Hawker, R. R., Croft, A. K. & Harper, J. B. Does the Cation Really Matter? The Effect of Modifying an Ionic Liquid Cation on an SN2 Process. Org. Biomol. Chem.11, 6170–5 (2013).

2.  Tanner, E. E. L., Hawker, R. R., Yau, H. M., Croft, A. K. & Harper, J. B. Probing the Importance of Ionic Liquid Structure: A General Ionic Liquid Effect on an SN Ar process. Org. Biomol. Chem.11, 7516–21 (2013).

3.  Yau, H. M. et al. Towards Solvent-Controlled Reactivity in Ionic Liquids. Pure Appl. Chem.85, 1979–1990 (2013).

Collaborations

1. Tambornino, F., Tanner, E. E. L. et al. Electrochemical Oxidation of the Phospha-and Arsaethynolate Anions, PCO–and AsCO–. European Journal of Inorganic Chemistry (2019).*Joint first-author

2.  Tanner, E. E. L. et al. The Corannulene Reduction Mechanism in Ionic Liquids is Con- trolled by Ion Pairing. J. Phys. Chem. C 120, 8405–8410 (2016).

Reviews and Perspectives

1. Agatemor, C., Ibsen, K. N., Tanner, E. E. L. & Mitragotri, S. Ionic Liquids for Addressing Unmet Needs in Healthcare. Bioeng. Transl. Med. (2018).

2.  Tanner, E. E. L. & Compton, R. G. How can Electrode Surface Modification Benefit Electroanalysis? Electroanalysis (2018).

3.  Suherman, A. L., Tanner, E. E. L. & Compton, R. G. Recent Developments in Inorganic Hg2+ Detection by Voltammetry. TrAC Tr. Anal. Chem. 94, 161–172 (2017).

Work with student advisees

1. Cai, X. et al. The mechanism of electrochemical reduction of hydrogen peroxide on silver nanoparticles. Physical Chemistry Chemical Physics(2018).

2. Chen, L., Tanner, E. E. L., Lin, C. & Compton, R. G. Impact electrochemistry reveals that graphene nanoplatelets catalyse the oxidation of dopamine via adsorption. Chem. Sci. (2018).

3. Lin, C., Chen, L., Tanner, E. E. L. & Compton, R. G. Electroanalytical study of dopamine oxidation on carbon electrodes: from the macro-to the micro-scale. Physical Chemistry Chemical Physics. 20, 148–157 (2018).

4.  Suherman, A. L. et al. Understanding gold nanoparticle dissolution in cyanide-containing solution via impact-chemistry. Physical Chemistry Chemical Physics. 20, 28300–28307 (2018).

5.  Suherman, A. L. et al. Voltammetric determination of aluminium (III) at tannic acid capped-gold nanoparticle modified electrodes. Sensors and Actuators B: Chemical265, 682–690 (2018).

6.  Suherman, A. L., Kuss, S., Tanner, E. E. L.,Young, N. P. & Compton, R. G. Electrochemical Hg2+ detection at tannic acid-gold nanoparticle modified electrodes by square wave voltammetry. Analyst (2018).

7.  Chen, L., Tanner, E. E. L. & Compton, R. G. Adsorption on Graphene: Flat to Edge to End Transitions of Phenyl Hydroquinone. Phys. Chem. Chem. Phys. 19, 17521–17525 (2017).

8.  Chen, L., Li, X., Tanner, E. E. L. & Compton, R. G. Catechol adsorption on graphene nanoplatelets: isotherm, flat to vertical phase transition and desorption kinetics. Chem. Sci.(2017).

9.  Jiao, X., Sokolov, S. V., Tanner, E. E. L., Young, N. P. & Compton, R. G. Exploring nanoparticle porosity using nano-impacts: platinum nanoparticle aggregates. Phys. Chem. Chem. Phys.19, 64–68 (1 2017).

10.  Jiao, X., Sokolov, S. V., Tanner, E. E. L.,Young, N. P. & Compton, R. G. Exploring Nanoparticle Porosity using Nano-impacts: Platinum Nanoparticle Aggregates. Phys. Chem. Chem. Phys.19, 64–68 (2017).

11.  Jiao, X. et al. Understanding Nanoparticle Porosity via Nanoimpacts and XPS: Electro- Oxidation of Platinum Nanoparticle Aggregates. Phys. Chem. Chem. Phys.19, 13547– 13552 (2017).

12.  Suherman, A. L. et al. Electrochemical Detection of Ultra-Trace (pico-molar) Levels of Hg2+ Using a Silver Nanoparticle-modified Glassy Carbon Electrode. Anal. Chem.(2017).

13.  Kraikaew, P. et al. Nanoparticle Surface Coverage Controls the Speciation of Electro-chemically Generated Chlorine. ChemElectroChem 3, 1794–1798 (11 2016).