Alumni Spotlight

Dr. John Kelly

John Kelly photo

John Kelly

As a chemist working for UES Inc. at Wright Patterson Air Force Base, John Kelly (PhD chemistry and biochemistry 16) focuses on improving a warfighter’s ability to detect chemical warfare in the field by optimizing and engineering novel solutions for imminent chemical weapons and terrorism. He uses state-of-the-art chemical identification and characterization sensors (gas chromatography-mass spectrometry or GC-MS) to survey the environment of a warzone. His most recent work is highlighted in the Journal of Chromatography A.

How/why/when did your interest in chemistry develop?
I was interested in chemistry as a National Science Foundation (NSF) recipient of the Research Experience for Undergraduates (REU) award in the Summer of 2008 after taking general chemistry in my undergraduate coursework at Georgia Southern University. This 8 week intensive research program focused on molten salt synthesis under the advisement of Dr. James Burgess. While the inorganic chemistry was interesting, I found myself captivated with how chemical analysis was performed and the technologies that are an essential part of everyone’s daily life. Being able to look at lines or numbers on a computer screen and confirm or deny the presence of a single chemical was and still is remarkable!

Tell us some details about your years at the University of Mississippi.
I attended the University of Mississippi from 2011 until 2016 where I received my PhD in chemistry and biochemistry under the mentorship of Professor Nathan Hammer. It was in this research group that I found my passion and devotion to problems solving at the fundamental level using advanced chemical analysis techniques.

What comes to mind most when thinking about the beginning of my scientific career path is the repairs and maintenance of a mass spectrometer (the gold standard of chemical identification) in the basement of Coulter Hall. Not all of the components were commercially available and many elements were customized therefore the developing scientist inside me started asking the questions “what does this do?” “why not do it this way?” and “how can this be done better?”

The two things that I am most proud of from my time at the UM are not tangible, but are transferable skills: 1) problem solving and 2) scientific communication. Professor Hammer provided endless opportunities for me to be a part of collaborations that stretched from Yale and Johns Hopkins to Max Planck Society (which connected with me with my first research position after UM). These collaborations engaged different minds from around the work to demonstrate new capabilities using novel instrumentation for chemical analysis was born in physical chemistry but these problem solving skills are the same ones I use in my daily routine.

The artform of communication is a cornerstone of being a great scientist. As a graduate student, I recall manuscript revisions having more red ink than black toner however, Professor Gregory Tschumper (committee member) embedded the art of focused and concise scientific writing. These two skills have evolved since my time at the UM, but without those two key people I would not be where I am today.

What has been your path since graduation? What are your career goals?  Discuss your research.   
Since graduation, I have spent a few years working in Europe as an academic, a year in industry research and development, and a year in government research. Each of these appointments and positions broadened my horizon and revealed new parts of the chemical sciences that I never thought existed.

My first stop after graduation was a postdoctoral fellowship at the Universität Leipzig in Germany where I learned not only new experiment techniques, but more importantly a new perspective on how science and data should be shared and discussed at a professional level. By engaging in the German culture, I was encouraged to deepen my knowledge in the history of chemistry and gain appreciation for the developments that have brought us where we are today.

After leaving Europe, I was appointed as postdoctoral associate through the NRC Research Associateship Program at an Air Force Research Laboratory (AFRL) in San Antonio, TX. This position brought me back into the United States and gave me a unique insight into research under the Department of Defense. After finishing my appointment with AFRL, I joined a small team of engineers, computer scientists, and chemists at a non-profit research and development company out of Menlo Park, CA called SRI International. This was my first look at external grant writing where science was not only an accomplishment but a product. One year later, I went back to work at AFRL (Wright Patterson Air Force Base) as a contractor to focus on important problems that we face today as Americans. Chemical, biological, radiological, nuclear and explosive (CBRNE) threats are at the utmost of importance for our soldiers, airmen, sailors, and Marines.

Today, I am a part of a team that improves methods of detection of chemical warfare by gold standard chemical analysis.

Why should a prospective student consider coming to UM to study?
UM offers a unique opportunity to incoming students to get engaged with research at a very early stage in their educational career. I consider myself lucky to have had the NSF-REU opportunity in the summer after my first year of college. By being involved in research, I was able to have extra time with my professors and senior-level undergraduates for answering important questions in for my career like “should I try graduate school” “what is most important when considering my options after I graduate” “what jobs can I get if my terminal degree is a BS, MS, or PhD” and “where would are the jobs that would hire somebody with my skill set.” UM allowed me not only to be a mentee to my graduate school advisor but also give back by being a mentor to undergraduate students in the research group.

Anything else you’d like to say.   
Your education is an investment that will return profits based on the effort you give. No one will give you a grade. No one will give you a job. No one will give you a raise. You have to earn them. You have to push for them. And ultimately you should look back at your failures and account for these in your plan for success.


Qun “Tring” Zhu

Qun “Tring” Zhu (PhD 2001) was featured in the Fall 2020 edition of the Ole Miss Alumni Review.  Click Here for the full issue and full article.  Zhu earned her bachelor’s degree in chemical engineering from Zhejiang University of Technology in Hangzhou, China, before she received a graduate research assistantship from Ole Miss and embarked on her journey there.  She was going to apply to the National University of Singapore, but her friend Zhuoli He, a postdoctoral fellow in chemistry at Ole Miss, convinced her to apply to Ole Miss.  “In the beginning, I struggled with the Southern accent,” Zhu says with a laugh. “I could read and write English, but having conversations was a challenge at the beginning.”  Her education included attending symposiums and conferences, such as a trip to a regional American Chemical Society meeting in New Orleans. Going to the Gordon Research Conference in New Hampshire every summer also gave Zhu insight into the tools needed to present to groups. The process included practice sessions where Zhu appreciated the feedback and training she received from Prof. Charles Hussey.  Hussey (BS 71, PhD 74), UM Distinguished Professor Emeritus of Chemistry and Biochemistry, saw Zhu’s dual skills as a researcher and team leader during her time as a doctoral student. Zhu earned her Ph.D. in electrochemistry and analytical chemistry from Ole Miss in 2001. “She is scientifically very bright and has a strong intuition, which is crucial to success in scientific research,” Hussey says. “She also has a very unique leadership skill in that she can influence team members to pursue a research direction without actually giving them orders.  I call this ‘gentle leadership.’ The best leaders have this kind of skill.”    “Dr. Hussey has high standards. He says, ‘You are not ready,’ and I practiced more until I was ready. Dr. Hussey taught me so much. He and the chemistry department gave me all the skills that I needed for future challenges.”  Obtaining a Ph.D. within the chemistry department also entails presenting a seminar to the entire department. “You have to come up with Ph.D. proposals, you have to prepare and learn how to present in front of a live audience,” Zhu says. “The auditorium was big. I prepared until I was ready!” After she completed her Ph.D., Zhu took an informal role as an Ole Miss recruiter. She recommended a couple of potential graduate students to the chemistry department at the university. “I did the screening,” Zhu says. “I looked at their resumés and made sure they were truly interested in pursuing the Ph.D. degree at Ole Miss.” Hussey notes Zhu could have excelled just as well if she had taken another path. “Qun trained with me at Ole Miss in the area of electrochemistry and went almost immediately into an industry where she went to work on diagnostics product development based on electrochemistry concepts. I think she would have done well in academia too.” 

Zhu’s transition from student to scientist began in 2001, when she accepted a job as a senior scientist with Aclara BioSciences Inc., in Mountain View, California. “My first job was doing R&D,” Zhu says. “I was doing electrochemistry. Two years later, I moved to San Diego to work for a company which was later acquired by BD. In 2007, I joined (the) Rapid Diagnostics division (now called the Point of-Care division).” Although Zhu has been working in industry since she left Ole Miss, she is also passionate about teaching and coaching, particularly in program management and leadership. She was a certified instructor at BD for planning and leading projects, and while working for  AstraZeneca China, she loved to provide training and coaching to the project managers. Zhu lives in San Diego with her husband, son and daughter. When she is not working, she enjoys running. “I love the outdoors,” she says. “My goal is to run 80 miles every month. I run at least three times a week and try to do that after work outdoors. You can do that year-round here.” Running enables Zhu to ponder ongoing work projects and clear her mind when needed. She realizes the rest of the year will be spent primarily addressing COVID-19. “Everybody is highly motivated, and people are exhausted,” Zhu says. “I work from home, but I really admire and appreciate our scientists because they had to go to the labs and do experiments every day. Without them, we do not have a product.”

Click Here for the full issue and full article.